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Optical Simulation of Grating Diffraction in MATLAB® 
 
by Ken Johnson
 
 The “Grating Diffraction Calculator” (GD-Calc®) is a MATLAB-based, 
electromagnetic simulation program that computes diffraction efficiencies of optical 
grating structures, including biperiodic gratings. The program’s capabilities include a 
general and flexible grating modeling facility, structure parameterization (with any 
number of parameters), and unrestricted control over diffraction order selection. 
Additionally, its implementation within the generic programming and application 
development framework of MATLAB provides a degree of flexibility and software 
interoperability that is not available with stand-alone diffraction analysis programs. 
 
 Part 1 of this article provides a conceptual overview of GD-Calc, describing in 
general terms how grating structure is specified and how electromagnetic computations 
are carried out. The presentation is primarily concept-oriented, but a few simple code 
examples are provided to give the reader a sense of how the GD-Calc software interface 
works. Part 2 provides a more in-depth introduction to the software interface, using as an 
example a tungsten photonic crystal structure1 to illustrate how grating structure is 
specified. (The code listings from Part 2 are summarized in gdc_intro.m.) 
 
 The primary focus of this article is grating structure specification. Application 
examples for electromagnetic computations are provided in an accompanying document, 
GD-Calc_Demo.pdf. (All of the code examples in this article and in GD-Calc_Demo.pdf 
can be run with the free demo/tutorial code from the GD-Calc website. The photonic 
crystal example is based on the demo script gdc_demo11.m.) The electromagnetic theory 
and algorithms underlying GD-Calc are detailed in GD-Calc.pdf. 
 

Part 1: Conceptual Overview 
 

MATLAB development environment 
 
 An advantage of working in the MATLAB environment is that functional links 
into and out of GD-Calc can be created without having to rely on cumbersome data 
conversion and import/export procedures. For example, in a semiconductor lithography 
application, a photoresist grating’s thickness and refractive index might both be affected 
by exposure-related resist densification, so it would be natural to specify thickness and 
refractive index both as user-defined functions of exposure. This is especially useful with 
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1 The photonic crystal structure is described in S. Y. Lin, J. G. Fleming, and I. El-Kady, “Highly efficient 
light emission at   by a three-dimensional tungsten photonic crystal,” Optics Letters 28(18), 1683-1685 
(2003). 
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structure parameterization, e.g., exposure could be defined as a vectorized quantity, in 
which case all exposure-dependent quantities, including the resist thickness, refractive 
index, and calculated diffraction efficiencies, will be similarly vectorized. 
 
 Typically, a grating’s optical characteristics are not themselves of primary 
interest; what is of interest is the optical response of a complete system that includes the 
grating as one component. MATLAB’s generic programming capability makes it easy to 
functionally link GD-Calc into user-defined optical system models, which can themselves 
be incorporated into generic optimization routines to optimize design performance. 
GD-Calc is simply a MATLAB function (gdc.m), which can be incorporated into other 
MATLAB functions or scripts, and which takes arguments that can be instantiated to 
user-defined functions. 
 
 Although stand-alone programs lack the generality and flexibility of the 
MATLAB development environment, they can have the advantage of simplicity and 
ease-of-use. However, GD-Calc can be used in conjunction with MATLAB to create 
customized user interfaces that are optimally adapted for specific applications. Many of 
the functions and scripts associated with GD-Calc such as its plotting facility 
(gdc_plot.m), its output data conversion function (gdc_eff.m), and a number of demo 
scripts are distributed as public-domain software so that users can freely modify and 
adapt the code to best suit their own or their customers’ needs. 
 

Structure specification 
 
 The primary limitation of GD-Calc’s grating modeling capability is that gratings 
must be “block-structured” (or must be defined approximately in terms of a block-
structured representation), meaning that the grating comprises optically homogeneous 
regions whose bounding surfaces are planes parallel to a set of primary coordinate planes. 
For example, a grating comprising a periodic array of pyramids would be represented 
using a “staircase approximation”, as illustrated in Figure 1. 
 
 The grating is subdivided into a number of “strata”, wherein each stratum is 
bounded by upper and lower planes parallel to the grating substrate. The grating has a 
height-independent lateral cross-section within each stratum. Figure 2 illustrates a 
particular stratum extracted from the pyramidal grating of Figure 1. Each stratum is 
partitioned into parallel “stripes”, which are further partitioned into rectangular “blocks” 
representing optically homogeneous regions. 
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Figure 1  Pyramidal grating 
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Figure 2  Grating stratum 
 
 In terms of software representation, a structure such as that of Figure 1 would be 
represented as a nested hierarchy of cell arrays within structs. The top-level data 
structure, designated here as grating, is a struct containing a cell-array stratum field 
whose elements, grating.stratum{1}, grating.stratum{2}, … represent the grating 
strata (numbered from the bottom up). The i-th stratum’s stripes are represented as 
grating.stratum{i}.stripe{1}, grating.stratum{i}.stripe{2}, …, and the j-th 
such stripe’s blocks are represented as grating.stratum{i}.stripe{j}.block{1}, 
grating.stratum{i}.stripe{j}.block{2}, … . Other fields within these structs 
define the bounding plane locations and the optical material within each block. The 
optical materials are described in terms of their complex permittivities, which are 
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enumerated in a top-level cell array grating.pmt, each element of which represents a 
particular material. A particular grating region’s optical material is specified as an integer 
index into this list (e.g. grating.stratum{i}.stripe{j}.block{k}.pmt_index); thus 
multiple regions can be constrained to represent the same material by giving them the 
same material index. 
 
 There are five different types of “stratum” objects that can be used to define the 
grating. These are enumerated below: 
 

Stratum type Description 
homogeneous homogeneous grating layer with no stripe boundaries 
uniperiodic stratum with homogeneous stripes, no block boundaries 
biperiodic general biperiodic stratum (as illustrated in Figure 2) 
coordinate break applies a translational shift to all strata above break plane 
replication module for defining 3-dimensionally periodic grating regions 

 
 Each stratum object has a “type” index indicating its type. For example, a 
homogeneous stratum is defined by three struct fields: the type index (zero), the stratum 
thickness, and the permittivity index, e.g., 
 stratum.type = 0;  % homogeneous 
 stratum.thick = 0.5; 
 stratum.pmt_index=1;  % index into grating.pmt 
 grating.stratum{1} = stratum; 
The homogeneous and uniperiodic stratum types are basically specializations of the more 
general biperiodic type. A “coordinate break” is a “stratum” in the abstract sense that it is 
associated with a lateral plane at a particular height in the grating, and it provides a 
simple mechanism for applying a lateral translational shift to all strata above the break 
plane without having to modify the individual stratum definitions. A “replication 
module” is a composite type of stratum object used to represent a structure pattern that 
repeats itself periodically in a direction transverse to the grating substrate. (The basic 
structure pattern is represented as a stack of strata, which can be of any type – including 
other replication modules.) 
 
 Figures 3 and 4 illustrate conceptually how the above structuring elements could 
be combined to define a photonic crystal structure. First, the three-stratum configuration 
illustrated in Figure 3 is defined. The first two strata are uniperiodic with orthogonal 
stripe orientations, and the third stratum is a coordinate break, which applies a half-period 
translational shift in each of the two periodicity directions. (The translational shift is 
represented by the arrow in Figure 3.) Next, the three strata are combined into a 
replication module object, which has an associated replication count indicating how many 
times the pattern is to be repeated. Figure 4 illustrates the resulting structure with a 
replication count of four. The structure comprises four stacked copies of the basic bilayer 
pattern, with each copy laterally shifted by a half period in both periodicity directions 
relative to the underlying bilayer. 
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translational shift

stratum 3 
stratum 2 
stratum 1 

 
Figure 3  Bilayer pattern (with coordinate break) for photonic crystal 

 
Figure 4  Photonic crystal 
 
 Rather than using a replication module in the above example, the grating could be 
defined by simply stacking four copies of the Figure 3 structure. However, the advantage 
of using a replication module is not just one of convenience. Whereas the GD-Calc 
computation time generally scales in proportion to the number of grating strata, the 

Copyright 2006, Kenneth C. Johnson 
software.kjinnovation.com 



6 

computation time for a replication module scales in proportion to the logarithm of the 
replication count. 
 

Parameterization 
 
 The GD-Calc interface specification (defined in the gdc.m comment header) 
identifies a number of grating attributes as “parameters”. A “parameter”, in this context, 
is a numeric quantity that can be vectorized as a multidimensional array. A parameter can 
be one of a number of basis parameters, each of which is associated with a particular 
array dimension (and which has only one non-singleton dimension), or it can be a 
function of other parameters. (A parameter’s non-singleton dimensions indicate its 
functional dependencies.) The only fundamental restriction on parameters is that they 
must all be size-matched, except that singleton dimensions are implicitly repmat-
extended, if necessary, to match parameter sizes. 
 
 A simple application example showing the use of parameterization is illustrated in 
Figure 5. 2 The figure shows a cross-section of an alignment-sensor grating comprising a 
substrate, a uniperiodic, surface-relief reflective grating (stratum 1), a homogeneous air 
space (stratum 2), a coordinate break (stratum 3), and a uniperiodic phase grating 
(stratum 4) on a transparent superstrate. A small, lateral translational shift between the 
two gratings will result in a measurable shift in the energy balance between the first- and 
minus-first-order diffraction efficiencies; thus the gratings can function as a sensitive 
positional transducer. 
 
 

stratum 1 
stratum 2 
stratum 4 stratum 3 

substrate 

superstrate  
 
 
 
 
 
 
Figure 5  Alignment-sensor grating 
 
 In this example, two grating parameters are vectorized: the air space thickness, 
represented as grating.stratum{2}.thick, and the phase plate’s translational shift, 
represented as grating.stratum{3}.dx2. These could be defined, for example, as 
 grating.stratum{2}.thick = wavelength*[3;2;1]; 
 grating.stratum{3}.dx2 = d*(0:63)/64; 
(The wavelength and d variables are scalars representing the illumination wavelength 
and grating period, respectively.) The air space is size-[3,1], and is vectorized in 
dimension 1, while the translational shift is size-[1,64], and is vectorized in dimension 2. 
Any quantities that are functionally dependent on both the air space and the translational 
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shift, including computed diffraction efficiency quantities, will be size-[3,64]. Based on 
the repmat-extension convention described above, these arrays are all size-compatible. 
 
 Parameterization can, in some instances, dramatically improve GD-Calc’s 
computational performance. As explained in the next section, the GD-Calc algorithms are 
based primarily on two operations: first, calculating an “S matrix” for each stratum, and 
then combining the S matrices from bottom to top by means of a “stacking” operation to 
determine a composite S matrix for the entire grating. In the above example, there are 
192 parameter combinations (3 air space thicknesses and 64 translational displacements), 
so if the parameters were iterated outside of GD-Calc all of the S-matrix computations 
would have to be repeated 192 times. But with parameterization, the S matrices for the 
grating layers (strata 1 and 4) will only have to be calculated once, the air space’s S 
matrix is calculated only three times, and the coordinate break’s S matrix is calculated 
only 64 times. Furthermore, the stacking operation for stratum 2 will be calculated just 3 
times, and only the stratum 3 and 4 stacking will have to be done for all 192 parameter 
combinations. 
 

Electromagnetic theory 
 
 GD-Calc’s algorithmic foundation is based on a generalized variant of rigorous 
coupled-wave (RCW) theory, which first came into use about three decades ago but has 
since undergone a couple of major improvements. In essence, the method represents both 
the electromagnetic field and the optical permittivity at any particular height in the 
grating in terms of their Fourier series in two lateral grating coordinates, and a set of 
differential equations are developed that describe the propagation of the field’s Fourier 
coefficients through the grating. 
 
 In the original formulation of RCW theory, the propagation equations were 
numerically solved to determine a “transmission matrix” that defined the field amplitudes 
(Fourier coefficients) at the top of each stratum as a linear function of the amplitudes at 
the bottom, and these matrices were then multiplied to determine a composite 
transmission matrix for the entire grating. But numerical contamination from 
exponentially growing errors caused this method to be numerically unstable, especially 
with very deep or highly conducting gratings. The problem has been resolved by using an 
alternative “S-matrix” (scattering matrix) approach, which represents each stratum in 
terms of a linear mapping relating the outgoing field amplitudes to the incoming field 
amplitudes at both boundaries. The individual mappings (S matrices) for the strata are 
combined by means of a numerically stable “stacking” algorithm to determine the 
grating’s composite S matrix. 
 
 The S-matrix method resolved the numerical stability problem, but convergence 
with respect to the number of Fourier coefficients retained in the calculations was 
typically very slow. The main problem had to do with terms in the differential equations 
representing the product of the electromagnetic field and the permittivity. Each product’s 
Fourier series was determined from its factors’ truncated Fourier series, but severe 
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numerical convergence problems arose when the factors had concurrent discontinuities 
associated with optical boundaries. This problem has been resolved by using a “Fast 
Fourier Factorization” method that, in essence, rearranges the equations to avoid product 
factors with concurrent discontinuities (i.e., in each equation where a concurrent 
discontinuity occurs, the permittivity factor is brought to the other side of the equation 
before applying the Fourier decomposition). 
 
 GD-Calc uses both the S-matrix method and Fast Fourier Factorization to 
optimize computational performance. (The numerical algorithms are detailed in 
GD-Calc.pdf.) One problem that remains with RCW methods, however, is the “staircase 
approximation” that must be used to describe sloped or curved surfaces in terms of the 
“block-structured” representation. Simply partitioning the grating into very small blocks 
does not ensure good accuracy, because the electromagnetic field can exhibit large spikes 
near the block corners, and the number of retained diffracted orders must be increased in 
proportion to the block partitioning density in order to adequately resolve the spikes. 
Thus, users of GD-Calc should be aware of convergence difficulties that can arise, 
particularly with highly-conducting gratings that are not inherently block-structured. (The 
GD-Calc demo scripts and GD-Calc_Demo.pdf provide examples of the program’s 
convergence behavior for a variety of test cases, including comparisons with published 
data.) 
 

Diffraction order selection 
 
 GD-Calc gives the user complete freedom in selecting which diffracted orders 
(i.e., Fourier coefficients) to retain in calculations. Generally, computational data storage 
requirements scale in approximate proportion to the square, and runtime scales in 
proportion to the cube, of the number of retained orders, so optimizing the order selection 
can very significantly impact computational performance. 
 
 The checkerboard grating illustrated in Figure 6 (in plan view) is one example 
where order selection is particularly useful. The grating is described in relation to two 
fundamental period vectors; for example vectors A

r
 and B

r
 would be a natural choice. 

However, the grating has a periodic symmetry stronger than that described by vectors A
r

 
and B

r
 because, for example, the fundamental period vectors A

r
 and C

r
 define a unit cell 

whose area is half that of A
r

 and B
r

. Thus, if the grating’s optical permittivity is Fourier 
analyzed with respect to orthogonal coordinates represented by vectors A

r
 and B

r
, half of 

its Fourier orders will be identically zero, and similarly half of the electromagnetic field’s 
diffracted orders will be zero. 
 
 Each grating Fourier coefficient, and correspondingly each electromagnetic 
diffraction order, has two associated Fourier order indices  and ; and the user must 
specify what set of  index pairs to retain in the electromagnetic field expansion. 
In the Figure 6 example, using basis periods 

1m 2m
),( 21 mm

A
r

 and B
r

, all orders with  odd 21 mm −
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would be identically zero, so only  index pairs with ),( 21 mm 21 mm −  even need be 
retained. The elimination of extraneous orders would reduce data storage requirements by 
about a factor of 4, and computation time would improve by about a factor of 8. 
 
 

C
r

A
r

B
r

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6  Checkerboard grating 
 
 The photonic crystal illustrated in Figure 4 is another example for which order 
selection can be used effectively. Rather than using the standard “rectangular order 
truncation” defined by the conditions maxmm _|| 1 ≤  and  maxmm _|| 2 ≤  for some 
truncation limit , an alternative “diagonal truncation” method, defined by the 
conditions , may be employed. The diffraction calculations’ 
convergence performance with respect to  would be similar with both methods, 
but diagonal truncation would be much more computationally efficient. 

maxm _
maxmmm _|||| 21 ≤+

maxm _

 

Part 2: GD-Calc Software Interface 
 

GD-Calc usage overview 
 
 The first step in using GD-Calc is to construct a “grating” data structure 
defining the grating geometry and optical materials. (Most of this tutorial will focus on 
this step.) You can then run a data validation check as follows, 
 
 gdc(grating); (1) 
 
Also, you can plot a 3-D view of the grating, 
 
 gdc_plot(grating,param_index,pmt_display,x_limit); (2) 
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param_index is a multi-dimensional parameter index, which relates to GD-Calc’s 
parameterization capabilities. (In the following examples param_index is just set to 1.) 
pmt_display specifies display colors and legend strings for the grating’s optical 
materials, and x_limit specifies 3-D plotting limits. gdc_plot internally invokes 
gdc(grating) to check data validity. 
 
 Next, you construct two additional data structures: “inc_field”, which specifies 
the incident electromagnetic field’s wavelength and direction; and “order”, which 
specifies which diffraction orders to retain in the calculations. The GD-Calc computation 
engine is then invoked as follows, 
 
 [param_size,scat_field,inc_field]=... 
  gdc(grating,inc_field,order); (3) 
 
The “param_size” output is related to parameterization, and the “scat_field” and 
“inc_field” outputs (i.e., “scattered field” and “incident field”) are passed to an 
accessory function, gdc_eff, which converts the results to diffraction efficiencies for 
reflected and transmitted diffraction orders (R and T, respectively), 
 
 [R,T]=gdc_eff(scat_field,inc_field); (4) 
 
(R and T are struct arrays defining diffraction efficiencies for multiple diffraction orders.) 
 
 The diffraction efficiency calculations require the calculation engine 
(gdc_engine.p), which is not part of the free demo/tutorial package; but for the photonic 
crystal example (gdc_demo11.m) the demo function gdc_demo_engine.p can be invoked 
in lieu of listing (3), 
 
 g,param_size,scat_field,inc_field]=..  [gratin .
  gdc_demo_engine(11,inc_field,order,... 
  grating_pmt,d,thick,width,rep_count);  (5) 
 
gdc_demo_engine constructs the grating structure based on the user-specified input 
arguments (grating_pmt, d, thick, width, and rep_count), which are described below. 
 

The grating struct 
 
 The grating struct comprises the following elements: (1) grating.pmt, a cell 
array of complex permittivities associated with the grating materials; (2) 
grating.pmt_sub_index and pmt_sup_index, the grating substrate and superstrate 
permittivities (specified as indices into grating.pmt); (3) grating.d21, d31, d22, and 
d32, which specify the grating’s fundamental period vectors; and (4) grating.stratum, 
a cell array of grating “strata” that define the grating’s internal structure. Following is an 
example of a trivially simple grating structure, a bare tungsten substrate with a complex 
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refractive index of 1.52+6.46*i. (This is the approximate refractive index of tungsten at 
a wavelength of m825.1 µ . The permittivity is the square of the refractive index.) 
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  (6) 

d=1.5; % grating period 
grating_pmt=(1.52+6.46*i)^2; % grating permittivity 
clear grating 
grating.pmt={1.0,grating_pmt}; 
grating.pmt_sub_index=2; 
grating.pmt_sup_index=1; 
grating.d21=d; 
grating.d31=0; 
grating.d22=0; 
grating.d32=d; 
grating.stratum={}; 

 
 
 
 
 
 The grating period vectors are irrelevant for a bare substrate but they must 
nevertheless be specified, and they will become relevant as we add periodic strata to the 
structure. The grating geometry is specified in relation to orthonormal coordinate basis 
vectors , , and , wherein  is normal to the grating substrate, and  and  are 
parallel to the substrate. Relative to these coordinate bases, the grating’s two period 
vectors 

1̂e 2ê 3ê 1̂e 2ê 3ê

][
1

gd
r

 and ][
2

gd
r

 have the following coordinate representations, 
 
  (7) ]g[

1,33
]g[
1,22

]g[
1 ˆˆ deded +=
r

 
  (8) ]g[

2,33
]g[
2,22

]g[
2 ˆˆ deded +=
r

 
The grating geometry is invariant under translation by ][

1
gd

r
 or ][

2
gd

r
, and the grating data 

fields, grating.d21, etc., correspond to , etc. ]g[
1,2d

 
 The following sections illustrate the variety of stratum types that can be 
incorporated in the grating. There are five stratum types, which are indicated by a type 
identifier in the range of 0 to 4. These are summarized below: 
  

type index stratum type 
0 homogeneous 
1 uniperiodic 
2 biperiodic 
3 coordinate break 
4 replication module
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Stratum type 0: homogeneous 
 
 The following code listing illustrates how the preceding grating specification 
(listing (6)) could be modified to represent a free-standing, homogeneous tungsten film of 
thickness m5.0 µ , 
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  (9) 

... 
thick=0.5; % stratum thickness 
... 
grating.pmt_sub_index=1; 
... 
clear stratum 
stratum.type=0; % homogeneous 
stratum.thick=thick; 
stratum.pmt_index=2; 
grating.stratum{1}=stratum; 

 
 
 
 
Note that grating.pmt_sub_index has been changed to 1, so the substrate now has 
permittivity 1.0 (grating.pmt{1} = 1.0), representing vacuum. The stratum struct has 
three data fields: the type index (0 for homogeneous), a thickness, and a permittivity 
index (pmt_index), which indexes into grating.pmt. 
 

Stratum type 1: uniperiodic 
 
 The following code excerpt replaces the homogeneous stratum of listing (9) with 
a uniperiodic stratum comprising free-standing, parallel, rectangular-section tungsten 
rods with a rod width of m5.0 µ , 
 
 
 
 
 
 
 
  (10) 

... 
width=0.5; % rod width 
... 
clear stratum 
stratum.type=1; % uniperiodic 
stratum.thick=thick; 
stratum.h11=1; 
stratum.h12=0; 
clear stripe 
stripe.c1=-0.5*width/d; 
stripe.pmt_index=1; 
stratum.stripe{1}=stripe; 
stripe.c1=0.5*width/d; 
stripe.pmt_index=2; 
stratum.stripe{2}=stripe; 
grating.stratum{1}=stratum; 

 
 
 
 
 
 
 
Before discussing the above code, let’s first plot the structure: 
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  (11) 

clear pmt_display 
pmt_display(1).name=''; 
pmt_display(1).color=[]; 
pmt_display(1).alpha=1; 
pmt_display(2).name='Tungsten'; 
pmt_display(2).color=[1,1,1]*0.75; 
pmt_display(2).alpha=1; 
x_limit=[-thick,-1.75*d,-1.75*d;... 
 2*thick,1.75*d,1.75*d]; 
gdc_plot(grating,1,pmt_display,x_limit); 

 
 
 
 
 
pmt_display(1) and pmt_display(2) define the display attributes for the two materials 
represented by grating.pmt{1} and grating.pmt{2}, respectively, in listing (6). (The 
assignment pmt_display(1).color=[] suppresses display of the first material, which is 
vacuum.) x_limit specifies 3-D plot limits, with columns 1, 2, and 3 corresponding to 
coordinates , , and , respectively. (The  axis is vertical, i.e. normal to the 
grating substrate; and the  and  axes are parallel to the substrate.) Figure 7 shows the 
gdc_plot result (with annotation added), which illustrates three tungsten rods. (The rods 
are shown as hollow, tubular elements, cut off at the display limits, although the grating 
is actually modeled as an infinite array of infinitely long, solid rods.) 

1x 2x 3x 1x

2x 3x

 

stripe 1 
stripe 2 

][
1

gd
r][

2
gd

r

1̂e

3ê  
2ê

 

Figure 7.  Uniperiodoc stratum, from listings (10) and (11). 
 
 As illustrated in listing (10), a uniperiodic stratum is defined by the following data 
fields: the type index (1), the stratum thickness, two “harmonic indices” h11 and h12, and 
a “stripe” data field. The physical structure represented by the stratum comprises a 
periodic array of parallel, vertical-wall stripes whose periodicity and orientation are 
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determined by the harmonic indices. With the assigned values h11=1 and h12=0 the 
stripes are parallel to  and have a periodicity defined by ][

2
gd

r
][

1
gd

r
; see Figure 7. (An 

explanation of how the harmonic indices are used in general is provided below.) 
 
 The stratum comprises two stripes per period (the grating line/space pairs), which 
are defined by the structs stratum.stripe{1} and stratum.stripe{2}. Each stripe 
struct has two data fields: c1, which defines one of the stripe’s wall positions, and 
pmt_index (an index into grating.pmt), which defines the stripe material. In this 
example, the boundary between the first and second stripes is at 

, and the boundary between the second stripe and the 
next adjacent stripe is at . (An explanation of how the 
stripe geometry is specified more generally is provided below.) The stratum.stripe 
cell array can be extended to define any number of stripes per period. 

d*ripe{1}.c1stratum.st=2x
d*ripe{2}.c1stratum.st=2x

 

Stratum type 2: biperiodic 
 
 Next, we consider a stratum comprising a free-standing tungsten film with a 
biperiodic array of square holes. Code listing (10) is modified as follows for this 
example, 
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  (12) 

... 
clear stratum 
stratum.type=2; % biperiodic 
stratum.thick=thick; 
stratum.h11=1; 
stratum.h12=0; 
stratum.h21=0; 
stratum.h22=1; 
clear stripe 
stripe.type=1; % inhomogeneous 
stripe.c1=-0.5*width/d; 
clear block 
block.c2=-0.5*width/d; 
block.pmt_index=1; 
stripe.block{1}=block; 
block.c2=0.5*width/d; 
block.pmt_index=2; 
stripe.block{2}=block; 
stratum.stripe{1}=stripe; 
clear stripe 
stripe.type=0; % homogeneous 
stripe.c1=0.5*width/d; 
stripe.pmt_index=2; 
stratum.stripe{2}=stripe; 
grating.stratum{1}=stratum; 

 
 
 
 
 
 
 
 
 
 
A plot of the grating structure (cf. listing (11)) is shown in Figure 8. The basic difference 
between a uniperiodic stratum (listing (10)) and a biperiodic stratum (listing (12)) is that 
the latter has two additional harmonic indices (h21 and h22), and its stripes can be either 
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of two types: homogeneous or inhomogeneous (indicated by a stripe.type field equal 
to 0 or 1, respectively). A homogeneous stripe such as stratum.stripe{2} has the same 
format in either a uniperiodic or biperiodic stratum, except that in the latter context the 
stripe has a type identifier (stripe.type=0). 

 

stripe 1 
stripe 2 

block 1 
block 2 

Figure 8.  Biperiodoc stratum, from listing (12). 
 
 An inhomogeneous stripe (e.g. stratum.stripe{1} in listing (12)) comprises the 
type identifier (stripe.type=1), the c1 data field defining the positions of boundary 
walls between stripes, and a “block” data field representing structural blocks within the 
stripe. As illustrated in Figure 8, the first stripe comprises two blocks per period (the 
square hole and the partition between holes), which are defined by stripe.block{1} 
and stripe.block{2}. Each block is defined by two data fields: c2, which defines the 
position of one of the walls between adjoining blocks, and pmt_index (an index into 
grating.pmt), which defines the block material. In this example, the boundary between 
the first and second blocks is at d*ck{1}.c2stripe.blo=3x , and the boundary 
between the second block and the next adjoining block is at 

. (An explanation of how the block geometry is specified 
more generally is provided below.) The stripe.block cell array can be extended to 
define any number of blocks per period. 

d*ck{2}.c2stripe.blo=3x

 

GD-Calc_Intro.pdf, version 09/22/2006 
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Harmonic indices and stratum periods 
 
 In general, a grating stratum’s geometry is defined relative to stratum-specific 
period vectors  and , which need not be identical to the grating periods  and 

, but which have a relationship to 
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a biperiodic stratum, this relationship is 
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wherein , ,  and  are integer-valued harmonic indices. This relationship 
can alternatively be expressed in terms of spatial frequencies. The grating has two 
fundamental spatial frequency vectors 
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If the period vectors are represented as size-[2, 1] arrays, and the frequency vectors as 
size-[1, 2] arrays (based on their  and  projections), then the above relationship can 

be expressed in MATLAB syntax as 
2ê 3ê
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 The above relationships apply to a biperiodic stratum. A uniperiodic stratum is 
characterized by a single period vector ][

1
sd

r
, which is orthogonal to the stratum stripes, 

and a single frequency vector , which is parallel to ][
1

sf
r

][
1
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 and which satisfies the 
relationship , i.e., 1][
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rr

 

 
][

1
][

1

][
1][

1 ss

s
s

dd
df rr

r
r

•
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A uniperiodic stratum’s frequency vector ][

1
sf

r
 is defined by the two harmonic indices  

and , 
1,1h

2,1h
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 ][
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 A stratum’s geometry is defined relative to its period vectors ][

1
sd

r
 and  (or just 

 for a uniperiodic stratum) as illustrated in Figure 9. (The coordinate origin is 
represented as 0

][
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r
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r
 in the figure.) The stratum’s stripe list comprises elements , 

, wherein  is the number of stripes per period; and the range of  is 
implicitly extended to 
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}stripe{ 2l  

}stripe{ 1+2l  

}}.block{stripe{ 32 ll }}.block{stripe{ 1+32 ll  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 9.  Stratum geometry definition. 
 
 If  is inhomogeneous, it comprises structural blocks 

, , wherein  is the number of blocks per period. The 
range of  is implicitly extended to 

}stripe{ 2l
}}.block{stripe{ 32 ll 33 1 Ll K= 3L

3l ∞−∞= K3l  by periodicity. The blocks are 
rectangular, and the boundary wall between  and }}.block{stripe{ 32 ll

                                                 

GD-Calc_Intro.pdf, version 09/22/2006 

3 The GDC-Calc documentation generally uses the “ ”, “ l ” and “ ” indices to label strata, stripes, and 
blocks, respectively. 

1l 2 3l
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}}.block{stripe{ 1+32 ll  intercepts the point ][
12

sdl
r

*}.c1stripe{  + 
][

232
sdll

r
*}.c2}.block{stripe{ . 

 
 To illustrate the use of harmonic indices, code listing (18) extends listing (10) to 
add a second stratum to the grating. The second stratum is identical to the first, except 

that its stripe orientation is rotated by  by swapping h11 and h12. Figure 10 shows a 
plot of the grating structure. (In generating Figure 10, the assignment x_limit(2,1)= 
3*thick is made to extend the plot limits; cf. listing (11). The limit should be similarly 
extended in other figures to follow.) 

o90

 
 
 
 (18) 
 
 
 
 
 

Figure
 

 

... 
stratum.h11=1; 
stratum.h12=0; 
... 
grating.stratum{1}=stratum; % same as listing (10) 
stratum.h11=0; % Swap h11 and h12. 
stratum.h12=1; 
grating.stratum{2}=stratum;
GD-Calc_Intro.pdf, version 09/22/2006 

 
 10.  Grating structure from listing (18). 
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Stratum type 3: coordinate break 
 
 The coordinate-break stratum type does not represent a physical grating layer, but 
it is abstractly classified as a “stratum” of zero thickness, in the sense that it is associated 
with a lateral plane at a particular  height in the grating. It has the effect of applying a 
specified lateral ( , ) translational shift to all strata above the coordinate break. 
Listing (19) illustrates the use of a coordinate break. This example extends listing (18) by 
inserting a coordinate break above the second stratum (this applies a half-period lateral 
shift to both the  and  coordinates), and then adding copies of the first two strata to 
the grating. As illustrated in Figure 11, the translational shift is applied to the top two 
strata. 

1x

2x 3x

2x 3x

 
 
 
 
 
 (19) 
 
 
 
 

Figure
 

 

... 
grating.stratum{1}=...; % same as listing (18) 
... 
grating.stratum{2}=...; % same as listing (18) 
clear stratum 
stratum.type=3; % coordinate break 
stratum.dx2=d/2; % half-period x2-shift 
stratum.dx3=d/2; % half-period x3-shift 
grating.stratum{3}=stratum; 
grating.stratum{4}=grating.stratum{1}; 
grating.stratum{5}=grating.stratum{2}; 
GD-Calc_Intro.pdf, version 09/22/2006 

 
 11.  Grating structure from listing (19). 
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Stratum type 4: replication module 
 
 A three-dimensionally periodic (“tri-periodic”) grating structure could be defined 
by first constructing the strata for one period in the vertical direction, and then iteratively 
replicating the first period. For example, listing (19) could be modified to define a 
photonic crystal structure by replacing the last two lines with the following loop, 
 
  (20) for l1=4:11 

    grating.stratum{l1}=grating.stratum{l1-3}; 
end  

 
However, a more efficient way to define this type of structure would be to use a 
“replication module”, which is a composite type of stratum comprising an encapsulated 
list of strata (for one period) and a replication count. 
 
 The following code excerpt illustrates the use of a replication module. The three 
strata encapsulated by the replication module ( , 

, ) are defined the same way as the first three 
grating strata in listings (18) and (19). Figure 12 illustrates the grating structure defined 
by listing (21). 

ratum{1}stratum.st

ratum{2}stratum.st ratum{3}stratum.st

 
Figure 12. Grating structure from listing 21. 

GD-Calc_Intro.pdf, version 09/22/2006 
Copyright 2006, Kenneth C. Johnson 

software.kjinnovation.com 



21 

 
... 
clear stratum 
stratum.type=4; % replication module 
stratum.stratum{1}=...; % same as previous grating.stratum{1}
stratum.stratum{2}=...; % same as previous grating.stratum{2}
stratum.stratum{3}=...; % same as previous grating.stratum{3}
stratum.rep_count=4; % replication count 
grating.stratum={stratum}; 

 
 
 
 
 
 
 
  (21) 
 

Incident field and diffraction order selection 
 
 The diffraction calculations assume a plane-wave incident electromagnetic field 
characterized by its spatial frequency vector ][if

r
. Using polar coordinates, this vector can 

be defined as 
 
 ( φθφθθλ sinsinˆcossinˆcosˆ 321

][ 1 eeef i ++−= )
r

 (22) 
 
wherein λ  is wavelength, and θ  and φ  are polar and azimuth angles of incidence. The 
inc_field struct specifies the wavelength and the  and  projections of 2ê 3ê ][if

r
 (denoted 

as f2 and f3), e.g., 
 
 
 (23) 
 
 
 
(The i
used to
 
 
tangen

[
11

gfm
r

numbe
full co
array, 
associ
order t
define
 

wavelength=1.825; 
theta=0.0; 
phi=0.0; 
inc_field.wavelength= wavelength; 
inc_field.f2=sin(theta)*cos(phi)/wavelength; 
inc_field.f3=sin(theta)*sin(phi)/wavelength; 
GD-Calc_Intro.pdf, version 09/22/2006 

ncident field’s polarization state is not specified because the GD-Calc output can be 
 determine diffraction efficiencies for any incident polarization state.) 

The diffracted electromagnetic field comprises diffraction orders whose grating-
tial spatial frequencies differ from that of the incident field by increments 

][
22

] gfm
r

+ , wherein  and  are integer-valued order indices. Only a finite 
r of orders are retained in diffraction calculations, and GD-Calc provides the user 
ntrol over which orders are retained. The orders are specified by the “order” struct 
each element of which corresponds to a specific  index and a list of  indices 
ated with that  value. Typically, the order selection is defined by “rectangular” 
runcation:  and 

1m 2m

2m 1m

2m
m_max≤|| 1m m_max≤|| 2m  for some truncation limit m_max, as 

d by the following code excerpt, 
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  (24) 

m_max=10; 
order=[]; 
m1=-m_max:m_max; 
for m2=-m_max:m_max 
    order(end+1).m2=m2; 
    order(end).m1=m1; 
end 

 
 
 
However, alternative truncation conditions can be used. For example, the photonic crystal 
grating described above can be analyzed using a “diagonal” truncation method defined by 
the conditions . (The two methods exhibit similar numerical 
convergence with respect to m_max, but the computation time is reduced by about a factor 
of 8 by using diagonal truncation.) The following code excerpt illustrates diffraction 
order selection using diagonal truncation, 

m_max≤+ |||| 21 mm

 
 
 
 
  (25) 

m_max=10; 
order=[]; 
m1=-m_max:m_max; 
for m2=-m_max:m_max 
    order(end+1).m2=m2; 
    order(end).m1=m1(abs(m1)+abs(m2)<=m_max); 
end 

 
 
 
 
 In the previous checkerboard grating example, using basis periods A

r
 and B

r
 

(Figure 6), all orders with  odd would be identically zero, These can be 
eliminated from the order selection by modifying the above order(end).m1 assignment 
to select only  indices for which 

21 mm −

1m 21 mm −  is even, 
 
 order(end).m1 = m1(mod(m1-m2,2)==0); (26) 
 

Going further 
 
 The m-file comment headers (especially gdc.m, gdc_eff.m, and gdc_plot.m) 
define the GD-Calc software interface more completely. GD-Calc_Demo.pdf provides 
additional technical background tutorial examples (including diffraction calculations) and 
computational performance data for a variety of grating types. (All of the code examples 
can be run with the demo/tutorial package, which can be freely downloaded from the 
GD-Calc website.) For detailed technical background on the theoretical basis of 
GD-Calc, see GD-Calc.pdf. 
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